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We are going to discuss about how to evaluate integrals of form
∫ P (x)

Q(x)
dx,

where P (x) and Q(x) are polynomials.

Theorem 1. Every non-constant polynomial can be written as a product of
some polynomials of degree one or two.

Theorem 2. If P (x) and Q(x) are polynomials, then we can write P (x)
Q(x)

as a sum of a polynomial and some partial fractions of the form A
(ax+b)i

or
Ax+B

(ax2+bx+c)j
, and the denominator of each partial fraction is a factor of Q(x).

The above theorems can be proved by Algebra, and we omit the proof
here.

So when dealing with
∫ P (x)

Q(x)
dx, as indicated by the above two theorems,

we can do the following steps:

1. If the degree of P (x) is greater than or equal to the degree of Q(x), we

first write it in a form P (x)
Q(x)

= S(x) + R(x)
Q(x)

with the degree of R(x) less

than the degree of Q(x).

2. Factorise Q(x) as a product of linear and quadratic polynomials.

3. Write R(x)
Q(x)

as a sum of partial fractions.

4. Evaluate the integral

Example 3. Compute
∫

x2+2x−1
2x3+3x2−2x

dx

(2x3 + 3x2 − 2x) = x(2x2 + 3x− 2) = x(2x + 1)(x− 2), so we let

x2 + 2x− 1

2x3 + 3x2 − 2x
=

A

x
+

B

2x + 1
+

C

x− 2
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This implies

x2+2x−1 = A(2x−1)(x+2)+Bx(x+2)+Cx(2x−1) = (2A+B+2C)x2+(3A+2B−C)x−2A

So we obtain equations: 
1 = 2A + B + 2C

2 = 3A + 2B − C

−1 = −2A

And solving the equations, we see A = 1
2
, B = 1

5
, C = − 1

10

We can do the integration:∫
x2 + 2x− 1

2x3 + 3x2 − 2x
dx =

∫
1

2x
+

1

5(2x− 1)
− 1

10(x + 2)
dx

=
ln |x|

2
+

ln |2x− 1|
10

− ln |x + 2|
10

+ C

Example 4. Compute
∫

x4−2x2+4x+1
x3−x2−x+1

dx

We first notice the degree of the numerator is no less than that of the
denominator, so we do a polynomial division to write

x4 − 2x2 + 4x + 1

x3 − x2 − x + 1
= (x + 1) +

4x

x3 − x2 − x + 1

The factorisation of the denominator is

x3 − x2 − x + 1 = x2(x− 1)− (x− 1) = (x2 − 1)(x− 1) = (x + 1)(x− 1)2

Now let

4x

(x + 1)(x− 1)2
=

A

x + 1
+

B

(x− 1)
+

C

(x− 1)2

=
A(x− 1)2 + B(x + 1)(x− 1) + C(x + 1)

(x− 1)(x + 1)2

=
(A + B)x2 + (C − 2A)x + (A−B + C)

(x + 1)(x− 1)2
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We get 
A + B = 0

C − 2A = 4

A−B + C = 0

The solution is A = −1, B = 1, C = 2, so

4x

(x + 1)(x− 1)2
= − 1

x + 1
− 1

(x− 1)
+

2

(x− 1)2∫
x4 − 2x2 + 4x + 1

x3 − x2 − x + 1
dx =

∫
(x + 1)− 1

x + 1
− 1

(x− 1)
+

2

(x− 1)2
dx

=
1

2
(x + 1)2 − ln |x + 1|+ ln |x− 1| − 2

x− 1
+ C

Example 5. Compute
∫

2x2−x+4
x3+4x

dx

The denominator is x3 + 4x = x(x2 + 4)
Let

2x2 − x + 4

x(x2 + 4)
=

A

x
+

Bx + C

x2 + 4

=
A(x2 + 4) + (Bx + C)x

x(x2 + 4)

=
(A + B)x2 + Cx + 4A

x(x2 + 4)

We get 
A + B = 2

C = −1

4A = 4

The solution is A = 1, B = 1, C = −1
This means

2x2 − x + 4

x3 + 4x
=

1

x
+

x

x2 + 4
− 1

x2 + 4∫
2x2 − x + 4

x3 + 4x
dx =

∫
1

x
+

x

x2 + 4
− 1

x2 + 4
dx

= ln |x|+ 1

2
ln(x2 + 4)− 1

2
tan−1(

x

2
) + C
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Example 6. Compute
∫

1−x+2x2−x3

x(x2+1)2
dx

Let

1− x + 2x2 − x3

x(x2 + 1)2
=

A

x
+

Bx + C

x2 + 1
+

Dx + E

(x2 + 1)2

=
A(x2 + 1)2 + (Bx + C)x(x2 + 1) + (Dx + E)x

x(x2 + 1)2

=
(A + B)x4 + Cx3 + (2A + B + D)x2 + (C + E)x + A

x(x2 + 1)2

We get 

A + B = 0

C = −1

2A + B + D = 2

C + E = −1

A = 1

The solution is A = 1, B = −1, C = −1, D = 1, E = 0.
So

1− x + 2x2 − x3

x(x2 + 1)2
=

1

x
− x

x2 + 1
− 1

x2 + 1
+

x

(x2 + 1)2

∫
1− x + 2x2 − x3

x(x2 + 1)2
dx =

∫
1

x
− x

x2 + 1
− 1

x2 + 1
+

x

(x2 + 1)2
dx

= ln |x| − 1

2
ln(x2 + 1)− tan−1(x)− 1

2(x2 + 1)
+ C
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